
ORIGINAL RESEARCH • NEURORADIOLOGY

This copy is for personal use only. To order copies, contact reprints@rsna.org

Alzheimer disease (AD), once a clinicopathologic entity, 
is now commonly defined according to markers of its 

three hallmark pathologies, which are amyloid protein 
plaques, tau protein neurofibrillary tangles, and neurode-
generation (1). The combination of markers that reflect 
these pathologies define an individual’s amyloid-tau-neu-
rodegeneration (ATN) status, a research construct that 
provides a biologic definition of AD and enables character-
ization of the pathophysiologic events and multifactorial 
etiology leading to dementia (2). With the rising use of 
biomarkers for the selection and triage of patients in AD 
clinical research, there is an increasing need for widespread 
deployment of an unbiased classification system.

The ATN system is operationalized by combining as-
sessments of positive or negative marker status in each  
of the three pathologic categories with the presence 
of β-amyloid using cerebrospinal fluid (CSF) Aβ or 

amyloid PET; the presence of hyperphosphorylated tau 
using CSF phosphorylated tau or tau PET; and the pres-
ence of neurodegeneration (ie, neuronal dysfunction or 
loss) using fluorodeoxyglucose (FDG) PET, structural 
MRI, or CSF total tau (2). Many of these tests are ex-
pensive and/or require invasive procedures that are not 
included in routine dementia assessment. PET has po-
tential advantages as it is more sensitive than CSF bio-
markers and noninvasive; however, it exposes patients 
to ionizing radiation and is expensive (3). Amyloid PET 
is not considered cost-effective for diagnostic purposes 
in patients with mild cognitive impairment; tau PET is 
currently a research tool; and FDG PET is only reim-
bursed by Medicare in the United States for distinguish-
ing frontotemporal dementia from AD or in the context 
of a clinical trial (4,5). Thus, ATN status is not routinely 
assessed in patient care (2).

Background:  PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable 
cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can 
detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status.

Purpose:  To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data.

Materials and Methods:  MRI and PET data were retrospectively collected from the Alzheimer’s Disease Imaging Initiative. PET scans were 
paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 
70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans 
into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features 
were combined in a logistic regression model with patient demographics, APOE gene status, cognitive scores, hippocampal volumes, and 
clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic 
curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients.

Results:  There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 
male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: 
amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the 
networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive 
scores, hippocampal volumes, and APOE status were highest.

Conclusion:  A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy 
using MRI and other available diagnostic data.
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Study Sample
To assemble the study sample, MRI data were paired with 
PET data gathered within 30 days of the PET acquisition 
date, from August 2005 to September 2020. The following 
radiotracers were used for each marker, and all other radio-
tracers were excluded: amyloid, fluorine 18 (18F) florbetapir 
(18F-AV-45); tau, flortaucipir (18F-AV-1451); and neurode-
generation, 18F-FDG. MRI and PET scans that were not ac-
quired within 30 days of each other were excluded. In some 
cases, an individual might contribute more than one PET and 
MRI pair. An overview of this pairing is shown in Figure 1. 
The data were randomly split into three subsets without over-
lap, with 70% for training, 10% for validation, and 20% for 
testing. If an individual contributed multiple image pairs, all 
pairs were kept within one subset to prevent data leakage. The 
training set was used for model development. The validation 
set was used for assessing model performance during develop-
ment. An internal holdout test set was used for final model 
evaluation to best assess model performance on a new sample 
of unseen data and provide a parallel to model performance 
when implemented at an outside institution. The test set was 
used once, after model development was completed, to evalu-
ate model performance on new data. 

Processing and Labeling of PET Scans
Amyloid marker values were calculated by averaging the stan-
dard uptake value ratio (SUVR) in frontal, anterior and pos-
terior cingulate, lateral parietal, and lateral temporal cortical 
regions and dividing by the average of all reference regions 
(cerebellum, brainstem and pons, subcortical white matter 
regions) (23). Tau marker values were calculated by dividing 
the metatemporal SUVR (entorhinal, amygdala, fusiform, in-
ferior, and middle temporal cortices) by the inferior cerebellum 
SUVR (24). Neurodegeneration marker values were calculated 
by dividing uptake in composite regions of interest (posterior 
cingulate gyrus, angular gyrus, inferior temporal gyrus) by 
uptake in pons and vermis reference regions (25,26). Because 
the ATN system classifies each marker as positive or negative, 
the continuous marker values were converted into discrete  
binary values using a bimodal Gaussian mixture model fit on 
the training set marker data. The model aimed to split the data 
into two separate Gaussian distributions and was then used to 
categorize markers.

Preprocessing of MRI Data
The MRI scans were preprocessed using sMRIPrep (https://ze-
nodo.org/record/6585099) (27). The T1-weighted images were 
corrected for intensity nonuniformity, spatially conformed, 
and skull-stripped. The images were then intensity normalized 
by limiting the minimum and maximum 0.1% of values, and 
empty edges of the volume were excluded. A schematic of the 
preprocessing steps is shown in Figure 2.

Clinical Data
Structured clinical data that included age, sex, apolipoprotein 
E (APOE) gene polymorphism status, hippocampal volumes, 
Mini-Mental State Examination (MMSE) score, Alzheimer’s 

Applications of deep learning techniques to medical imaging 
have grown due to increased computational power, improved 
methodology, and improved availability of data. Prediction of 
an individual’s clinical disease status or progression from mild 
cognitive impairment to AD has been performed with high ac-
curacy using MRI (6). Additionally, there have been numerous 
machine learning studies that have predicted amyloid status us-
ing clinical and genetic data, either alone (7–12), or combined 
with MRI data (13–22). The aim of the current study was to 
use deep learning to predict PET-determined ATN status using 
MRI and other readily available patient data.

Materials and Methods
This was a retrospective study approved by the health system 
institutional review board. Patients were enrolled according to 
state and federal Health Insurance Portability and Account-
ability Act regulations, and written informed consent was 
obtained.

Database
The data used in this study were obtained from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) database, launched in 
2003 as a public-private partnership led by the principal inves-
tigator, Michael W. Weiner, MD. The database is a longitudinal 
collection of biomarkers, imaging, and other patient data with 
the goal of advancing AD prevention and intervention. The 
investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not par-
ticipate in the analysis or writing of this report. Additional up-
to-date information can be found at www.adni-info.org.

Abbreviations
AD = Alzheimer disease, ADAS13 = Alzheimer’s Disease Assessment 
Scale–Cognitive Subscale with 13 items, ADNI = Alzheimer’s Disease 
Neuroimaging Initiative, ATN = amyloid-tau-neurodegeneration, AUC =  
area under the receiver operating characteristic curve, CSF = cerebrospinal  
fluid, FDG = fluorodeoxyglucose, Grad-CAM = gradient-weighted class 
activation mapping, MMSE = Mini-Mental State Examination

Summary
A deep learning algorithm predicted PET-determined amyloid, tau, 
and neurodegeneration status in Alzheimer disease with good efficacy 
using high-resolution T1-weighted MRI scans and other readily avail-
able cognitive, genetic, volumetric, and demographic data.

Key Results
	■ This retrospective study used MRI volumes and clinical data to predict 
PET-determined amyloid, tau, and neurodegeneration biomarker 
status using 2099 amyloid, 557 tau, and 2768 fluorodeoxyglucose 
(FDG) PET scans, achieving areas under the receiver operating 
characteristic curve of 0.79, 0.73, and 0.86, respectively, at internal 
validation.

	■ Important features of all the amyloid, tau, and neurodegeneration 
biomarker prediction models included key temporal, parietal, 
frontal, and occipital cortical regions on MRI scans, age, cognitive 
scores, hippocampal volumes, and APOE status.

	■ The study included MRI volumes in patients with diagnoses across 
the cognitive spectrum at the time of imaging (2059 cognitively 
normal, 2843 mild cognitive impairment, and 522 Alzheimer 
disease).
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Disease Assessment Scale–Cognitive Sub-
scale with 13 items (ADAS13) score, and 
clinical diagnosis were incorporated into 
model inputs. Hippocampal volume was 
used as a single feature due to its high utility 
in predicting AD progression in the absence 
of other volumetric measurements (28). All 
continuous features were scaled 0–1 based on 
the training set minimum and maximum to 
improve training stability and interpretabil-
ity. For missing categorical data points, the 
chronologically nearest value within 1 year 
was used. For any continuous values that re-
mained missing, imputation was done using 
training set medians for each feature.

Model Architecture
The deep learning model (hereafter, called 
the combined model) had two inputs and 
one output. The MRI input was passed 
through five convolutional blocks to gener-
ate 100 features that were concatenated with 
the structured clinical data input, which was 
then used in a logistic regression model to 
generate the final prediction score. An over-
view of the model architecture is shown 
in Figure 3. Separate models were trained 
for each biomarker task to improve model 
specificity. To improve model performance 
and reduce overfitting, a grid search was 
performed to tune hyperparameters and the 
number of imaging features on the valida-
tion set. For comparison with the combined 
model, a model that used MRI data alone 
(hereafter, called the MRI model) and struc-
tured clinical data alone (hereafter, called 
the structured model) were tested.

The code and trained models used in this 
study can be found at GitHub (https://github.
com/chris-lew/predicting_ATN_markers_ 
using_MRI).

Statistical Analysis
Summary statistics were calculated by fitting 
linear mixed models for continuous variables 
and generalized linear mixed models with a 
logit link for dichotomous variables, whereby the individual was 
included as a random intercept effect. The significance of the fixed 
effect variables on the dependent variable of interest was evaluated 
using a likelihood ratio test between the full model and a model 
with only the fixed effect. Other variables were evaluated using 
the χ2 test. Model performance was evaluated on the validation 
and test sets by using accuracy and area under the receiver oper-
ating characteristic curve (AUC) values, and gradient-weighted 
class activation mapping (Grad-CAM) was used on the MRI 
model to identify important areas of the image for classification 
(29). A threshold of 0.5 was used to convert model predictions 

(ranging 0–1) to binary labels when calculating statistics. The  
DeLong method was used to calculate 95% CIs and to compare 
the AUCs of different nested models (30). P < .05 was consid-
ered indicative of a statistically significant difference. Finally, 
feature importance analysis of the logistic regression model was 
performed by examining the absolute value of coefficients of 
each feature.

The sample size of MRI and PET pairs was the maximum 
number of pairs in the ADNI database that fit our inclusion 
and exclusion criteria, aiming to maintain the best match in 
time between each MRI and PET study.

Figure 1:  Flow diagram shows inclusion of study patients in the amyloid, tau, and neurodegeneration 
groups. Because the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database contains longitudinal 
data for each participant, one participant may contribute multiple MRI and PET scans. Additionally, each MRI 
scan may be paired with one or more PET scans. Fluorine 18 (18F) florbetapir (18F-AV-45), flortaucipir (18F-
AV1451), and 18F fluorodeoxyglucose (18F-FDG) were the radiotracers used for amyloid, tau, and neuro-
degeneration assessments, respectively. * numbers do not add up to 1489 due to overlap between the sets.
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Results

Characteristics of the Study Sample
Biomarker and structured clinical data are sum-
marized in Table 1 for the amyloid sample, Table 2 
for the tau sample, and Table 3 for the neurodegen-
eration sample. There were 2099 amyloid PET and 
MRI pairs (mean patient age, 75 years ± 10 [SD]; 
1110 male), 557 tau PET and MRI pairs (mean pa-
tient age, 75 years ± 7; 280 male), and 2768 FDG 
PET and MRI pairs (mean patient age, 75 years ± 
7; 1645 male). There was a total of 1027 unique pa-
tients in the amyloid sample, 375 unique patients 
in the tau sample, and 1239 unique patients in 
the neurodegeneration sample (Fig 1). There were 
217 unique MRI scans that were paired with amy-
loid and tau PET scans with no FDG PET scans, 
1108 MRI scans that were paired with amyloid 
and FDG PET scans with no tau PET scans, and 
22 MRI scans that were paired with tau and FDG 
PET scans with no amyloid PET scans. There were 
57 unique MRI scans that were paired with amy-
loid, tau, and FDG PET scans. Scans were labeled 
positive in 46% (975 of 2099 pairs) of the amyloid 
sample, 15% (83 of 557 pairs) of the tau sample, 
and 40% (1094 of 2768 pairs) of the neurodegen-
eration sample. Figure 4 shows the distribution of 
continuous values for each biomarker and the cut-
off determined when fitting a bimodal Gaussian mixture model 
on the training set distribution. Additional data describing char-
acteristics of the training, validation, and test sets for each of the 
amyloid, tau, and neurodegeneration cohorts can be found in 
Tables S1–S3, respectively.

Performance of the Combined Model, MRI Model, and 
Structured Model
Performance of the structured model, MRI model, and com-
bined model for each biomarker is summarized in Table 4. 
For the classifiers for each biomarker, the DeLong P value was 
used to compare AUCs of either the structured model or MRI 
model with the combined model. In the test set, there was a 
difference in performance between the structured model and 
the combined model when considering AUCs for amyloid 

(structured model, 0.71; combined model, 0.79; DeLong  
P < .001), tau (structured model, 0.54; combined model, 0.73; 
DeLong P = .002), and neurodegeneration (structured model, 
0.76; combined model, 0.86; DeLong P < .001). There was 
no detectable difference in performance between the MRI 
model and the combined model when considering AUCs for 
amyloid (MRI model, 0.73; combined model, 0.79; DeLong  
P = .07), tau (MRI model, 0.80; combined model, 0.73; De-
Long P = .46), or neurodegeneration (MRI model, 0.85; com-
bined model, 0.86; DeLong P = .28).

Grad-CAM Analysis for the Amyloid, Tau, and 
Neurodegeneration MRI Models
Grad-CAM analysis was performed by examining the gradi-
ents of the final convolutional layer of the MRI model for 

Figure 2:  Schematic shows the image preprocessing pipeline. An MRI scan (left) is used as the original MRI data and, after processing, the preprocessed image data 
(right) is input into the model.

Figure 3:  Diagram shows the model architecture. The model features two different inputs that 
include preprocessed image data and preprocessed patient data. The model outputs a biomarker 
prediction score within the range of 0–1. A combined model was trained separately for each of the 
amyloid, tau, and neurodegeneration biomarkers.



Lew et al

Radiology: Volume 309: Number 1—October 2023  ■  radiology.rsna.org	 5

each biomarker. High gradients in a region, relative to the 
rest of the image, indicate that the region was salient for per-
forming predictions (29). For the amyloid MRI model, the 
perisylvian, inferior frontal, temporo-occipital, and frontal 
regions toward the vertex had high gradients. For the tau 
MRI model, the temporal, inferior frontal, perisylvian, and 
occipital regions, and the cerebellum, had high gradients. For 
the neurodegeneration MRI model, the perisylvian, parietal, 
medial occipital, and anterior cingulate regions had high 
gradients. The Grad-CAM analysis is illustrated in Figure 5. 
It is important to note that these maps were derived from 
the MRI model rather than the combined model, which has 
a more complex interplay between the structured data and 
MRI data that cannot be easily illustrated.

Feature Importance of the Various Models
Feature importance of the structured model for each biomarker 
is shown using bar graphs in Figure 6, depicting the weight of 
each structured data feature when a logistic regression model was 
fit on the training data. Because the model is deterministically 
fit and all features were scaled 0–1 and imputed, feature weights 
can be compared within the model. Weights from the combined 
model were not obtained because complex relations between 
structured data and MRI features would be difficult to interpret. 
For amyloid, the features with the greatest effect on positive pre-
dictions were the ADAS13 score, age, MMSE score, and APOE 
E4 allele. For tau, the features were ADAS13 score, hippocampal 
volumes, a cognitively normal diagnosis, and MMSE score. For 
neurodegeneration, the features were ADAS13 score, hippocam-
pal volumes, age, and MMSE score. For all models, sex and a 
diagnosis of early mild cognitive impairment, late mild cognitive 

Table 1: Patient Characteristics at Time of Imaging for 
Scan Pairs in the Amyloid Study Sample according  
to Label

Characteristic

Amyloid  
Positive  
(n = 975)

Amyloid  
Negative  
(n = 1124) P Value

Biomarker value* 1.40 ± 0.17 1.01 ± 0.06 <.001
Age (y)* 77 ± 7 75 ± 8 <.001
Sex
  M 501 (51) 609 (54) .63
  F 474 (49) 515 (46)
MMSE score*† 25.7 ± 4.5 28.5 ± 2.3 <.001
ADAS13 score*† 19.3 ± 12.3 10.6 ± 7.1 <.001
Hippocampal  

volume (mm3)*†
7375 ± 1040 7827 ± 990 <.001

APOEE4
  Noncarrier 373 (38) 880 (78) <.001
  Carrier 602 (62) 244 (22)
Diagnosis
  Cognitively normal 301 (31) 588 (52) <.001
  Mild cognitive  

  impairment
569 (58) 519 (46)

  Alzheimer disease 105 (11) 17 (2)
Interval between  

MRI and PET (d)*
10.3 ± 9.6 9.8 ± 9.2 .39

Note.—Except where indicated, data are numbers of patients, 
with percentages in parentheses. Biomarker values are unitless 
standard uptake value ratios. Imputed values are excluded. 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
gathers data on patients at intervals; therefore, one patient 
may contribute multiple unique samples with varying data 
to a cohort. In the ADNI database, the cognitively normal 
category includes both cognitively normal and subjective 
memory concern, and the mild cognitive impairment category 
includes early and late mild cognitive impairment, as well as 
mild cognitive impairment. ADAS13 = Alzheimer’s Disease 
Assessment Scale–Cognitive Subscale with 13 items, APOEE4 = 
allele producing the E4 type of APOE, MMSE = Mini-Mental 
State Examination.
* Data are means ± SDs for continuous variables.
† Less than 0.1% of all values were missing and required 
imputation.

Table 2: Patient Characteristics at Time of Imaging for 
Scan Pairs in the Tau Study Sample according to Label

Characteristic
Tau Positive 
(n = 83)

Tau Negative 
(n = 474) P Value

Biomarker value* 1.75 ± 0.32 1.20 ± 0.09 <.001
Age (y)* 75 ± 8 76 ± 7 .06
Sex
  M 42 (51) 238 (50) .72
  F 41 (49) 236 (50)
MMSE score*† 24 ± 4.5 28.6 ± 1.7 <.001
ADAS13 score*† 24.2 ± 12.5 10.7 ± 6.9 <.001
Hippocampal volume 

(mm3)*†
6919 ± 1146 7787 ± 1014 <.001

APOEE4
  Noncarrier 28 (34) 301 (64) <.001
  Carrier 55 (66) 173 (36)
Diagnosis
  Cognitively normal 24 (29) 308 (65) <.001
  Mild cognitive 

impairment
44 (53) 159 (34)

  Alzheimer disease 15 (18) 7 (2)
Interval between MRI 

and PET (d)*
9.1 ± 9.8 9.6 ± 9.5 .54

Note.—Except where indicated, data are numbers of patients, 
with percentages in parentheses. Biomarker values are unitless 
standard uptake value ratios. Imputed values are excluded. 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
gathers data on patients at intervals; therefore, one patient 
may contribute multiple unique samples with varying data 
to a cohort. In the ADNI database, the cognitively normal 
category includes both cognitively normal and subjective 
memory concern, and the mild cognitive impairment category 
includes early and late mild cognitive impairment, as well as 
mild cognitive impairment. ADAS13 = Alzheimer’s Disease 
Assessment Scale–Cognitive Subscale with 13 items, APOEE4 = 
allele producing the E4 type of APOE, MMSE = Mini-Mental 
State Examination.
* Data are means ± SDs for continuous variables.
† Less than 0.1% of all values were missing and required 
imputation.
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impairment, mild cognitive impairment, or subjective memory 
concern were weighted lower and thus less useful for predictions.

Discussion
The amyloid-tau-neurodegeneration (ATN) classification sys-
tem aims to establish biomarker status based on a biologic 
definition of Alzheimer disease (AD); however, it requires 
costly or invasive procedures to obtain data for classifica-
tion. In our study, PET scans for each ATN biomarker were 
paired with MRI scans acquired within 30 days, to yield 2099 

amyloid PET and MRI pairs, 557 tau PET and MRI pairs, 
and 2768 FDG PET and MRI pairs. We assessed the value 
of combining deep learning features from MRI with readily 

Table 3: Patient Characteristics at Time of Imaging for 
Scan Pairs in the Neurodegeneration Study Sample 
according to Label

Characteristic

Neurodegeneration  
Positive  
(n = 1094)

Neurodegeneration  
Negative  
(n = 1674) P Value

Biomarker value* 1.01 ± 0.10 1.29 ± 0.10 <.001
Age (y)* 77 ± 7 75 ± 7 <.001
Sex
  F 420 (38) 703 (42) .50
  M 674 (62) 971 (58)
MMSE score*† 24.6 ± 4.5 28.1 ± 2.1 <.001
ADAS13 score*† 24.5 ± 11.7 12.8 ± 7.4 <.001
Hippocampal  

volume*‡  
(mm3)

6941 ± 1011 7747 ± 953 <.001

APOEE4
  Noncarrier 467 (43) 1053 (63) <.001
  Carrier 627 (57) 621 (37)
Diagnosis
  Cognitively  

  normal
150 (14) 688 (41) <.001

  Mild cognitive  
  impairment

643 (59) 909 (54)

  Alzheimer  
disease

301 (28) 77 (5)

Interval  
between MRI  
and PET (d)*

8.7 ± 9.1 10.3 ± 9.5 <.001

Note.—Except where indicated, data are numbers of patients, 
with percentages in parentheses. Biomarker values are unitless 
standard uptake value ratios. Imputed values are excluded. The 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) gathers data 
on patients at intervals; therefore, one patient may contribute 
multiple unique samples with varying data to a cohort. In the 
ADNI database, the cognitively normal category includes both 
cognitively normal and subjective memory concern, and the 
mild cognitive impairment category includes early and late mild 
cognitive impairment, as well as mild cognitive impairment. 
ADAS13 = Alzheimer’s Disease Assessment Scale–Cognitive 
Subscale with 13 items, APOEE4 = allele producing the E4 type 
of APOE, MMSE = Mini-Mental State Examination.
* Data are means ± SDs for continuous variables.
† Less than 0.1% of all values were missing and required 
imputation.
‡ For the neurodegeneration study sample, 52% of hippocampal 
volume measurements were missing and required imputation.

Figure 4:  Histograms show PET biomarker data for (A) amyloid, (B) tau, and 
(C) neurodegeneration in the training set. The dashed vertical line in each histogram 
is the cutoff value determined by the bimodal Gaussian mixture model (1.134 for 
amyloid, 1.432 for tau, and 1.141 for neurodegeneration). Biomarker values are 
unitless standard uptake value ratios.
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Table 4: Performance for Determining Positivity of Amyloid, Tau, and Neurodegeneration Biomarkers Using the 
Structured Model, MRI Model, and Combined Model on the Validation and Test Sets

Biomarker and Metric

Validation Set Test Set

Structured Model MRI Model Combined Model Structured Model MRI Model Combined Model
Amyloid
  AUC 0.67  

(0.60, 0.75)
0.63  

(0.53, 0.72)
0.74  

(0.66, 0.82)
0.71  

(0.67, 0.76)
0.73  

(0.68, 0.78)
0.79  

(0.74, 0.83)
  Accuracy* 67 (60, 75) 

[141/210]
62 (54, 70) 

[131/210]
63 (55, 71) 

[133/210]
72 (68, 77) 

[303/420]
66 (61, 71) 

[278/420]
71 (67, 76) 

[299/420]
  PPV* 68 (60, 75) 

[142/210]
60 (52, 69) 

[127/210]
63 (55, 71) 

[133/210]
71 (67, 76) 

[300/420]
65 (61, 70) 

[275/420]
72 (67, 76) 

[301/420]
  NPV* 67 (59, 75) 

[141/210]
65 (58, 73) 

[137/210]
63 (55, 71) 

[132/210]
73 (69, 78) 

[308/420]
67 (63, 72) 

[283/420]
71 (66, 75) 

[297/420]
  Sensitivity* 68 (60, 75) 

[142/210]
73 (66, 81) 

[154/210]
63 (55, 71) 

[133/210]
82 (78, 85) 

[343/420]
79 (75, 83) 

[334/420]
78 (74, 82) 

[327/420]
  Specificity* 67 (59, 75) 

[141/210]
51 (43, 60) 

[108/210]
63 (55, 71) 

[132/210]
61 (56, 66) 

[256/420]
51 (46, 56) 

[213/420]
63 (59, 68) 

[266/420]
  P value† .004 .04 NA <.001 .07 NA
Tau
  AUC 0.70  

(0.54, 0.86)
0.76  

(0.60, 0.93)
0.83  

(0.64, 1.00)
0.54  

(0.46, 0.61)
0.80  

(0.68, 0.92)
0.73  

(0.58, 0.88)
  Accuracy* 88 (79, 97) 

[49/56]
86 (75, 95) 

[48/56]
88 (78, 97) 

[49/56]
89 (83, 95) 

[99/111]
86 (81, 93) 

[96/111]
89 (83, 95) 

[99/111]
  PPV* 86 (77, 96) 

[48/56]
84 (74, 95) 

[47/56]
88 (79, 97) 

[49/56]
89 (83, 95) 

[99/111]
89 (83, 95) 

[99/111]
91 (86, 96) 

[101/111]
  NPV* 100 (100, 100) 

[56/56]
100 (100, 100) 

[56/56]
84 (73, 94) 

[47/56]
100 (100, 100) 

[111/111]
40 (31, 49) 

[44/111]
57 (48, 67) 

[63/111]
  Sensitivity* 100 (100, 100) 

[56/56]
100 (100, 100) 

[56/56]
98 (93, 100) 

[55/56]
100 (100, 100) 

[111/111]
96 (93, 100) 

[107/111]
96 (93, 100) 

[107/111]
  Specificity* 39 (25, 53) 

[22/56]
30 (17, 43) 

[17/56]
50 (36, 64) 

[28/56]
8 (3, 13) 

[9/111]
15 (9, 22) 

[17/111]
31 (22, 40) 

[34/111]
  P value† .02 .43 NA .002 0.46 NA
Neurodegeneration
  AUC 0.70  

(0.64, 0.77)
0.81  

(0.75, 0.86)
0.84  

(0.79, 0.89)
0.76  

(0.72, 0.79)
0.85  

(0.80, 0.87)
0.86  

(0.83, 0.89)
  Accuracy* 73 (67, 79) 

[202/277]
73 (67, 79) 

[202/277]
74 (68, 80) 

[206/277]
77 (63, 75) 

[428/554]
76 (72, 80) 

[420/554]
75 (72, 79) 

[418/554]
  PPV* 69 (63, 75) 

[191/277]
66 (59, 72) 

[183/277]
73 (67, 79) 

[203/277]
78 (74, 81) 

[431/554]
69 (65, 73) 

[381/554]
69 (65, 73) 

[384/554]
  NPV* 75 (69, 81) 

[207/277]
78 (72, 83) 

[216/277]
75 (69, 81) 

[207/277]
77 (74, 81) 

[426/554]
82 (79, 85) 

[456/554]
81 (77, 84) 

[446/554]
  Sensitivity* 58 (52, 65) 

[162/277]
67 (60, 73) 

[186/277]
56 (49, 63) 

[155/277]
65 (61, 69) 

[358/554]
78 (74, 82) 

[434/554]
75 (71, 79) 

[416/554]
  Specificity* 83 (77, 88) 

[229/277]
77 (71, 83) 

[213/277]
87 82, 91) 

[240/277]
87 (84, 89) 

[479/554]
74 (70, 78) 

[409/554]
76 (72, 79) 

[419/554]
  P value† <.001 .009 NA <.001 .28 NA

Note.—Data in parentheses are 95% CIs. The structured model used structured data only; the MRI model used MRI data only; and the 
combined model used both structured and MRI data. A threshold of 0.5 was used to convert model predictions (ranging 0–1) to binary 
labels. The total number of patients in the validation and test sets for each biomarker are as follows: amyloid, n = 210 and n = 420; tau,  
n = 56 and n = 111; and neurodegeneration, n = 277 and n = 554, respectively. AUC = area under the receiver operator characteristic curve, 
NA = not applicable, NPV = negative predictive value, PPV = positive predictive value.
* Data are percentages, with numbers of patients in brackets.
† DeLong P values were calculated by comparing predictions between the combined model and the selected model.

available diagnostic patient data (age, sex, APOE gene poly-
morphism status, hippocampal volumes, Mini-Mental State 
Examination [MMSE] score, Alzheimer’s Disease Assessment 

Scale–Cognitive Subscale with 13 items [ADAS13] score, 
and clinical diagnosis) to predict the PET-determined ATN 
status. The method performed well, with AUCs of 0.79, 0.73, 
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and 0.86 for amyloid, tau, and neurodegeneration, respec-
tively. Comparing the model that used MRI data alone (MRI 
model) against the model that used MRI and other diagnostic 
data (combined model), there were no detectable differences 
in performance in the test set for any of the biomarkers; al-
though, there were improvements in the validation set for 
amyloid and neurodegeneration, which were the markers 
with the highest sample sizes. Our results support a strong 
relationship between diagnostic data features and ATN sta-
tus, in particular for age, hippocampal volumes, ADAS13 
score, and MMSE score, with ADAS13 and MMSE scores 
as the features of highest importance in the logistic regres-
sion model. These findings are consistent with our current 
understanding of how these features relate to AD markers, 
disease progression, and staging. However, with our current 

sample, we were unable to demonstrate an incremental gain 
in performance over the model with MRI data only.

Grad-CAM showed brain regions that are considered salient 
in the MRI model. The amyloid MRI model favored broad 
areas across the association cortex with less emphasis on the 
sensorimotor and visual cortex, brainstem, and basal ganglia 
regions. The tau MRI model favored the temporal and infe-
rior frontal cortical areas toward the base of the brain with less 
emphasis at the vertex. The neurodegeneration MRI model 
strongly favored the temporal and parietal cortex, which are 
among the earliest affected by atrophy. The class activation 
maps did not necessarily match the known distributions of 
neuropathology and hypometabolism that are well described 
in AD (31). This may be because the algorithm is merely try-
ing to predict binary labels from the data-driven MRI features 

Figure 5:   Image sequences show gradient-weighted class activation mapping (Grad-CAM, or Cam) superimposed on T1-weighted template images for the  
(A) amyloid, (B) tau, and (C) neurodegeneration MRI models that were trained on MRI data alone. This mapping method is used to analyze gradients of a convolutional 
neural network to identify salient areas of the image for classification. A higher gradient, relative to other regions, indicates that the region was salient for performing predictions. 
Gradients were scaled from 0 to 1, as indicated by the color bars.
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Figure 6:  Bar graphs show absolute values of feature weights of 
the logistic regression models for the (A) amyloid, (B) tau, and (C) 
neurodegeneration structured models, which used structured clinical 
data only. Larger weights have an increasing impact on model pre-
dictions. AD = Alzheimer disease, ADAS13 = Alzheimer’s Disease As-
sessment Scale–Cognitive Subscale with 13 items, CN = cognitively 
normal, EMCI = early mild cognitive impairment, LMCI = late mild 
cognitive impairment, MCI = mild cognitive impairment, MMSE = Mini-
Mental State Examination, SMC = subjective memory concern.

rather than predict the distribution of pathology, 
which is known to vary according to disease stage.  
Alternatively, the map patterns may be an artifact 
of limited data, suggesting the need for further 
model validation and refinement in a larger sample 
prior to deployment.

Several other studies involving AD have applied 
machine learning to MRI data to predict PET out-
comes; however, these studies have been limited to 
prediction of amyloid status. There have been stud-
ies aiming to classify amyloid status without using 
MRI data, with AUCs ranging 0.73–0.81 (8–12), 
and with MRI data, with AUCs ranging 0.80–0.90 
(7,13–22). However, these studies often required 
additional information, such as difficult-to-obtain 
blood protein markers, as well as specific MRI find-
ings scored by radiologists (7,9). Our study used 
amyloid PET values for labels, rather than CSF val-
ues, because of their higher sensitivity, which can be 
useful in screening applications (3,32). Our study 
also used a sample larger than those of the stron-
gest performing studies, which demonstrated AUCs 
ranging 0.85–0.90 and used clinically defined sam-
ples of less than 500 individuals (15,17,18,33). This 
suggests there may be inherent limitations in using a 
single algorithm to predict amyloid status from im-
aging and structured clinical data in a broad sample 
across different cognitive stages.

Our study had limitations. First, due to the lack 
of standardized cutoffs for standard uptake value 
ratios (SUVRs) to separate positive and negative 
biomarker labels for all three ATN components, 
we used Gaussian mixture models to estimate cut 
points for consistency and objectivity. This can 
be a drawback for unimodal distributions, as in 
the case of neurodegeneration biomarker values, 
where patient diagnoses were predominantly in 
the heterogeneous mild cognitive impairment 
category. Second, the tau data set had 557 scan 
pairs with 15% (83 of 557) of these labeled posi-
tive. This positively skewed class imbalance re-
duced confidence in the tau results and explains 
the variability seen in model performance. Third, 
our training population is a biased sample, and 
may not match the disease prevalence of potential 
target populations. For example, the presence of 
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non-AD pathology is likely underrepresented in the ADNI 
database compared with community settings, limiting gener-
alizability. Fourth, we had many patients contribute multiple 
data points thereby increasing our sample size, recognizing 
that MRI data, biomarker values, cognitive scores, and more 
could change at the time of different imaging examinations, 
even within the same patient. To remove potential individual 
biases, we used spatial normalization to a standardized tem-
plate. Furthermore, we prevented data leakage by keeping 
different scans from the same patient within the same subset 
(training, validation, or test). Fifth, our neurodegeneration 
marker was based on FDG PET metabolism rather than the 
more commonly used MRI measures of atrophy, to avoid cir-
cular reasoning. Nevertheless, our FDG PET measurements 
were likely affected by atrophy. Atrophy correction was not 
incorporated into the composite region-of-interest SUVR 
measures used to label individual images. Moreover, although 
hypometabolic findings on PET scans are known to precede 
atrophy on MRI scans by years, they may coexist at later stages 
of disease (34). Therefore, our FDG PET measures may be af-
fected by both atrophy and hypometabolism. Lastly, we treated 
the status of each ATN biomarker independently, rather than 
as an interdependent multivariate composite. The latter would 
require eight (ie, 23) different possible outcome combinations 
with markedly smaller cell sizes for model training. Further-
more, to provide such training data, we would need to include 
patients with all different combinations of ATN classification 
status and require patients to undergo imaging for all three 
PET markers within a short interval of an MRI examination, 
thus greatly reducing our sample size.

In conclusion, the deep learning method described herein was 
able to predict PET-determined amyloid, tau, and neurodegen-
eration classification across a wide cognitive spectrum with mod-
erate to high diagnostic efficacy by using deep learning–based 
MRI features combined with other readily available patient data. 
Further work examining the utility of other MRI sequences that 
reflect additional relevant comorbidities for dementia, such as 
white matter disease and microhemorrhage, may prove useful, 
in addition to exploring where in the diagnostic algorithm this 
technique would add maximum value.
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